Carnets  de  science

 

La physique et la chimie au lycée


Énoncer la physique

Rédiger une copie

Dimensions et unités

Physique et mathématiques

Travaux pratiques

Alphabet grec


Sommaire

Mécanique
01. Cinématique
02. Dynamique
03. Énergétique
04. Oscillations
05. Relativité restreinte

Interactions fondamentales
06. Gravitation
07. Électrostatique
08. Électrodynamique
09. Radioactivité
10. Réactions nucléaires

Ondes et rayonnements
11. Ondes
12. Optique géométrique
13. Lentilles minces
14. Optique ondulatoire
15. Rayonnements
16. Signaux

Thermodynamique
17. Pression et gaz parfaits
18. Tranferts thermiques
19. Chaleurs de réaction

Chimie générale
20. Grandeurs intensives
21. Éléments chimiques
22. Réaction chimique
23. Acides-Bases
24. Oxydoréduction
25. Cinétique chimique

Chimie organique
26. Nomenclature
27. Groupes fonctionnels
28. Mécanismes réactionnels
29. Extraction et synthèse
30. Analyse spectrale


Programmes

Exercices

Formulaire

Épreuves du baccalauréat

Annales


  Le système du monde  

  Le Panthéon de la tour Eiffel  

Carnet de bac

Annales

De l'effet Doppler à ses applications

➔
Métropole 2016 - Exercice 1 - 6 points

Christian Doppler
(1803- 1853)

Christoph Buys-Ballot
(1817-1890)

Christian Doppler, savant autrichien, propose en 1842 une explication de la modification de la fréquence du son perçu par un observateur immobile lorsque la source sonore est en mouvement. Buys-Ballot, scientifique hollandais, vérifie expérimentalement la théorie de Doppler en 1845, en enregistrant le décalage en fréquence d’un son provenant d’un train en mouvement et perçu par un observateur immobile.

On se propose de présenter l’effet Doppler puis de l’illustrer au travers de deux applications.

1. Mouvement relatif d’une source sonore et d’un détecteur

Nous nous intéressons dans un premier temps au changement de fréquence associé au mouvement relatif d’une source sonore S et d’un détecteur placé au point M (figure 1). Le référentiel d’étude est le référentiel terrestre dans lequel le détecteur est immobile. Une source S émet des « bips » sonores à intervalles de temps réguliers dont la période d’émission est notée T0. Le signal sonore se propage à la célérité vson par rapport au référentiel terrestre.


Figure 1. Schéma représentant une source sonore immobile (cas A), puis en mouvement (cas B).



1.1. Cas A : la source S est immobile en x = 0 et le détecteur M, situé à la distance d, perçoit chaque bip sonore avec un retard lié à la durée de propagation du signal.

1.1.1. Définir par une phrase, en utilisant l’expression « bips sonores», la fréquence f0 de ce signal périodique.

1.1.2. Comparer la période temporelle T des bips sonores perçus par le détecteur à la période d’émission T0.

1.2. Cas B : la source S, initialement en x = 0, se déplace à une vitesse constante vs suivant l’axe Ox en direction du détecteur immobile. La vitesse vs est inférieure à la célérité vson. On suppose que la source reste à gauche du détecteur. Le détecteur perçoit alors les différents bips séparés d’une durée \(\displaystyle \mathrm{ T'=T_0 \left( 1 - \frac{v_s}{v_{son}} \right) }\).
Indiquer si la fréquence f’ des bips perçus par le détecteur est inférieure ou supérieure à la fréquence f0 avec laquelle les bips sont émis par la source S. Justifier.

2. La vélocimétrie Doppler en médecine

La médecine fait appel à l’effet Doppler pour mesurer la vitesse d’écoulement du sang dans les vaisseaux sanguins (figure 2).

Un émetteur produit des ondes ultrasonores qui traversent la paroi d’un vaisseau sanguin. Pour simplifier, on suppose que lorsque le faisceau ultrasonore traverse des tissus biologiques, il rencontre :

- des cibles fixes sur lesquelles il se réfléchit sans modification de la fréquence ;
- des cibles mobiles, comme les globules rouges du sang, sur lesquelles il se réfléchit avec une modification de la fréquence ultrasonore par effet Doppler (figure 3).


Figure 3



L’onde ultrasonore émise, de fréquence fE = 10 MHz, se réfléchit sur les globules rouges qui sont animés d’une vitesse v. L’onde réfléchie est ensuite détectée par le récepteur. La vitesse v des globules rouges dans le vaisseau sanguin est donnée par la relation \(\displaystyle \mathrm{ v= \frac{v_{ultrason}}{2 \ cos θ} \cdot \frac{Δf}{f_E} }\). où Δf est le décalage en fréquence entre l’onde émise et l’onde réfléchie, vultrason la célérité des ultrasons dans le sang et θ l’angle défini sur la figure 3.

On donne vultrason=1,57·103 m·s-1 et θ = 45°.

2.1. Le décalage en fréquence mesuré par le récepteur est de 1,5 kHz. Identifier le(s) type(s) de vaisseaux sanguins dont il pourrait s’agir.

2.2. Pour les mêmes vaisseaux sanguins et dans les mêmes conditions de mesure, on augmente la fréquence des ultrasons émis fE. Indiquer comment évolue le décalage en fréquence Δf. Justifier.

3. Détermination de la vitesse d’un hélicoptère par effet Doppler

On s’intéresse à un son émis par un hélicoptère et perçu par un observateur immobile. La valeur de la fréquence de l’onde sonore émise par l’hélicoptère est f0 = 8,1·102 Hz. On se place dans le référentiel terrestre pour toute la suite de cette partie.

Les portions de cercles des figures 4 et 5 ci-dessous donnent les maxima d’amplitude de l’onde sonore à un instant donné. Le point A schématise l’hélicoptère. Dans le cas de la figure 4, l’hélicoptère est immobile. Dans le cas de la figure 5, il se déplace à vitesse constante le long de l’axe et vers l’observateur placé au point O. La célérité du son dans l’air est indépendante de sa fréquence.


Figure 4. L’hélicoptère est immobile.

Figure 5. L’hélicoptère est en mouvement.


3.1. Déterminer, avec un maximum de précision, la longueur d’onde λ0 de l’onde sonore perçue par l’observateur lorsque l’hélicoptère est immobile, puis la longueur d’onde λ’ lorsque l’hélicoptère est en mouvement rectiligne uniforme.

3.2. En déduire une estimation de la valeur de la célérité de l’onde sonore. Commenter la valeur obtenue.

3.3. Déterminer la fréquence du son perçu par l’observateur lorsque l’hélicoptère est en mouvement. Cette valeur est-elle en accord avec le résultat de la question 1.2. ? Comment la perception du son est-elle modifiée ?

3.4. En déduire la valeur de la vitesse de l’hélicoptère. Cette valeur vous paraît-elle réaliste ?




Base de données

NIST : Constantes fondamentales

BIPM : Bureau international des poids et mesures

INRS : Institut national de recherche et de sécurité  

Académie des sciences

Udppc : Union des physiciens

Bup : Bulletin de l'union des physiciens

CNRS : Centre national de la recherche scientifique

Sfp : Société française de physique 

Sciences à l'école

Baccalauréat

Olympiades de physique 

Olympiades de chimie

Concours général des lycées et des métiers

CGU

Vacances scolaires

Toussaint
2020
Noël
2020
Zone Hiver
2021
Pâques
2021
17 · 10

02 · 11
19 · 12

04 · 01
A
06 · 02
22 · 02
10 · 04
26 · 04
B
20 · 02
08 · 03
24 · 04
10 · 05
C
13 · 02
01 · 03
17 · 04
03 · 05
A : Besançon, Bordeaux, Clermont-Ferrand, Dijon, Grenoble, Limoges, Lyon, Poitiers
B : Aix-Marseille, Amiens, Caen, Lille, Nancy-Metz, Nantes, Nice, Orléans-Tours, Reims, Rennes, Rouen, Strasbourg
C : Créteil, Montpellier, Paris, Toulouse, Versailles